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The spectral/hp element method can be considered as bridging the gap between the
– traditionally low-order – finite element method on one side and spectral methods on
the other side. Consequently, a major challenge which arises in implementing the
spectral/hp element methods is to design algorithms that perform efficiently for both
low- and high-order spectral/hp discretisations, as well as discretisations in the interme-
diate regime. In this paper, we explain how the judicious use of different implementation
strategies can be employed to achieve high efficiency across a wide range of polynomial
orders. Furthermore, based upon this efficient implementation, we analyse which spec-
tral/hp discretisation (which specific combination of mesh-size h and polynomial order
P) minimises the computational cost to solve an elliptic problem up to a predefined level
of accuracy. We investigate this question for a set of both smooth and non-smooth
problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The spectral/hp element method combines the geometric flexibility of classical h-type finite element or finite volume
techniques with the desirable resolution properties of spectral methods. In this approach a polynomial expansion of order
P is applied to every elemental domain of a coarse finite element type mesh. These techniques have been applied in many
fundamental studies of fluid mechanics [1] and more recently have gained greater popularity in the modelling of wave-based
phenomena such as computational electromagnetics [2] and shallow water problems [3] – particularly when applied within
a Discontinuous Galerkin formulation.

Spectral/hp element methods can be considered as a high-order extension of classical – traditionally low-order – finite
element methods where convergence is not only possible through reducing the characteristic mesh-size h but also through
increasing the local polynomial order P within an elemental subdomain. However, the concept of high and low-order discret-
isations can mean very different things to different communities. For example, the seminal works by Zienkiewicz and Taylor
[4] and Hughes [5] list examples of elemental expansions only up to third or possibly fourth-order, implying that these
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orders are considered to be high-order for the traditional h-type finite element community. In contrast the text books of the
spectral/hp element community [6–9] typically show examples of problems ranging from a low-order bound of minimally
fourth-order up to anything ranging from 10th to 15th order polynomial expansions. On the other end of the spectrum, prac-
titioners of global spectral methods [10] would probably consider a 16th order global expansion to be relatively low-order
approximation.

One could wonder whether these different definitions of low- and high-order is just inherent to the tradition and lore
of each of the communities or whether there are more practical reasons for this distinct interpretation. Proponents of low-
er order methods might highlight that some problems of practical interest are so geometrically complex that one cannot
computationally afford to use high-order techniques on the massive meshes required to capture the geometry. Alterna-
tively, proponents of high-order methods highlight that if the problem of interest can be captured on a computational do-
main at reasonable cost then using high-order approximations for sufficiently smooth solutions will provide a lower
accuracy for a given computational cost. If one however probes even further it also becomes evident that the different
communities choose to implement their algorithms in a different manner. For example the standard h-type finite element
community will typically uses techniques such as sparse matrix storage formats (where only the non-zero entries of a glo-
bal matrix are stored) to represent a global operator. In contrast the spectral/hp element community acknowledges that
for higher polynomial expansions more closely coupled computational work takes place at the individual elemental level
and this leads to the use of elemental operators rather than global matrix operators. In addition the global spectral method
community often make use of the tensor-product approximations where products of one-dimensional rules for integration
and differentiation can be applied. From the results in this paper, it will appear that each of the different implementation
strategies will perform poorly when applied outside the aforementioned polynomial regimes typically adopted by the dif-
ferent communities, hinting that the traditional views of low- and high-order may be have been strengthened by these
practical barriers.

In this paper, we are therefore lead to ask when we should adopt these different implementation strategies if we are to
allow the order of our spatial approximations to vary from P = 1 up to say P = 15? We note that analytic estimates of com-
putational work in this polynomial regime are difficult if not impossible to establish since the computational effort is
highly dependent on hard to predict hardware characteristics such as memory management and caching effect as well
as optimised linear algebra packages such as BLAS and LAPACK. We therefore will mainly follow a computational approach
to assess the efficiency of the different implementation strategies. The support of various implementation strategies with-
in a spectral/hp code will allow the user to cross the community dependent barriers of low- and high-order in an efficient
way such as the aforementioned example of P = 4 (the high-order limit for traditional finite elements and the low-order
limit for spectral/hp elements). This surrounding polynomial regime (2 < P < 6) is however potentially an optimal/desirable
range for applications where the mesh resolution is such that increasing polynomial order leads to the onset of rapid/spec-
tral convergence. This level of resolution might be necessary to capture, for example, a complex geometry. The benefit of
intermediate polynomial resolution will however only be observed if one can efficiently implement these polynomial
discretisations.

Finally, we can also question whether it is sufficient to know which implementation strategy is optimal in terms
of CPU time for a specific polynomial order discretisation? Probably a more pertinent question is consider given the
most efficient implementation, what is the best spectral/hp discretisation to obtain a fixed error for a minimal computational
cost? Since computational cost is impacted by different discretisation methodologies such as element size h, polynomial
order P, adaptive refinement r [11] or even the continuity of the approximation k [12], there are clearly many factors
to consider. To help reduce this extensive parameter space in this paper we will restrict ourselves to just h and P refine-
ments leading to the question: which specific combination of mesh-size h and polynomial order P requires the minimal
computational cost (i.e. run-time) to solve a problem up to a predefined accuracy? We will investigate this question
for a set of both smooth and non-smooth elliptic problems. To outline the scope of this study, we must also consider
which part of the implementation we look to optimise. In the solution of time-dependent partial differential equations,
such as those that arise in fluid mechanics, electromagnetics and oceanography, it is often the case that you can
have the repeated application of a matrix problem. However, in a steady partial differential equation which might
arise in structural mechanics the cost of setting up and the matrix problem may be as equally important as the
solution time. In the following analysis we will adopt the first case and assume the repeated application of the
matrix operators is the dominant cost. As a result, we aim to optimise the evaluation of such matrix operators for
minimal run-time, thereby neglecting any matrix construction time. In addition, we do not consider any memory
constraints.

The paper is organised as follows: in Section 2, we begin by introducing the spectral/hp element method and highlighting
some of its aspects relevant to the topic of this paper. In Section 3, we explain how a local operator can be efficiently eval-
uated for both low- and high-order expansions. Therefore, we first introduce and discuss three different implementation
strategies using global matrices, local matrices of a sum factorisation technique. We then provide theoretical cost estimates
for each strategy. Next we investigate the effect of the different strategies on the actual run-time by a set of computational
tests and analyse which strategy should be selected depending on the polynomial order. Subsequently, in Section 4 we look
for the optimal combination of mesh-size h and polynomial order P that solves a certain problem up to a predefined level of
accuracy in a minimal amount of time for four different test-problems. Finally Section 5 summarises and concludes the pre-
sented work.
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2. The spectral/hp element method

2.1. Tensorial expansion bases

Like any finite element method, the spectral/hp element method starts by decomposing the domain X into a tessellation
of jEj quadrilateral and/or triangular elements such that
Fig. 1.
of orde
X ¼
[
e2E

Xe: ð1Þ
Each of these elements Xe in physical space can be considered as an image of a standard element Xst in reference space. For
every element, there exists a one-to-one mapping relating the physical Cartesian coordinates (x1,x2) of the element Xe to the
reference coordinate system (n1,n2), which is defined as
x1 ¼ ve
1ðn1; n2Þ; x2 ¼ ve

2ðn1; n2Þ: ð2Þ
2.1.1. Quadrilateral tensorial expansion bases
The quadrilateral standard element Xst is defined as the bi-unit square Q2 ¼ fðn1; n2Þ 2 ½�1;1� � ½�1;1�g. Its Cartesian

structure can be exploited to locally represent the solution as a tensorial spectral/hp expansion
uðn1; n2Þ ¼
X
n2N

/nðn1; n2Þûn ¼
XP

p¼0

XP

q¼0

wpðn1Þwqðn2Þûpq; ð3Þ
where the set of two-dimensional basis functions {/n} with index setN is defined as a tensor product of the one-dimensional
basis functions {wp} in each of the coordinate directions, as depicted in Fig. 1. The expansion basis {wp} spans the polynomial
space of order P and, for a globally C0 continuous expansion – see also Section 2.2 – typically consists of a set of either modal
or nodal basis functions which can be decomposed into boundary modes and interior modes. Boundary modes are defined as
all the modes which have non-zero support on the boundary where interior modes are zero on all boundaries. The tensor-
product nature of the expansion will be the necessary prerequisite for the application of the sum-factorisation technique
outlined in Section 3.1.1.

2.1.2. Triangular tensorial expansion bases
The non-tensorial structure of the triangular reference element T 2 ¼ f�1 6 n1; n2; n1 þ n2 6 0g seems to prohibit the con-

struction of a tensorial expansion basis and consequently, the application of the sum-factorisation technique. However, after
introducing a collapsed coordinate system given by the transformation
g1ðn1; n2Þ ¼ 2
1þ n1

1� n2
� 1; g2ðn1; n2Þ ¼ n2; ð4Þ
the triangular element can now be defined as T 2 ¼ fðg1;g2Þ 2 ½�1;1� � ½�1;1�g. In order to generate a C0-continuous expan-
sion and to ensure completeness of the expansion, we now use a generalised tensor product to define the expansion basis as
uðn1; n2Þ ¼
X
n2N

/nðn1; n2Þûn ¼
XP

p¼0

Xf ðpÞ
q¼0

wp g1ðn1; n2Þð Þwpq g2ðn1; n2Þð Þûpq: ð5Þ
Note that the upper bound f(p) of the index q now depends on the index p. This construction is graphically represented in
Fig. 2 for the C0 continuous modal triangular expansion introduced by Dubiner [13]. For an in-depth discussion of tensorial
expansions for triangular elements, the reader is referred to [7].
Construction of a two-dimensional C0 continuous modal quadrilateral expansion basis from the tensor product of two one-dimensional expansions
r P = 4 (edge and face modes have been scaled by a factor of 4 and 16, respectively).



Fig. 2. Construction of a two-dimensional fourth-order C0 continuous modal triangular expansion basis using a generalised tensor-product procedure (edge
and face modes have been scaled by a factor of 4 and 16, respectively).

Fig. 3. Illustration of local to global assembly. If we have a global expansion as represented in figure (a) it can be decomposed into two elemental
contributions multiplied by the same global coefficient û. To integrate a function f(x1,x2) with respect to the global mode, as illustrated in figure (b), the
integration in the global region is the sum of the integration in the local regions.
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Note that in both the quadrilateral and triangular case, the lowest order spectral/hp expansion (i.e. P = 1) corresponds to
the well-known linear finite element expansion. The typical linear basis functions also appear as the vertex modes of higher
order modal spectral/hp expansions, as can be observed in Figs. 1 and 2.

2.2. Global assembly

Although high-order expansion bases are initially constructed on an elemental level, we require some form of connectiv-
ity between the elements in order to solve partial differential equations. Such global representations of the solution are typ-
ically constructed by imposing C0 continuity across element boundaries. This procedure is facilitated by the boundary/
interior decomposition of the elemental modes as we consequently only need to merge the corresponding boundary modes
of adjacent elements into single global modes. This is depicted in Fig. 3(a). A global C0 continuous spectral/hp expansion can
then be represented as
uðx1; x2Þ ¼
X

m2N g

Umðx1; x2Þûg
m ¼

X
e2E

X
n2N

/e
nðx1; x2Þûe

n; ð6Þ
where fûg
i g are the global degrees of freedom corresponding to the global expansion basis {Ui}. The jEj � jN j elemental de-

grees of freedom ûe
m can be related to the jN g j global degrees of freedom ûg

n through the local-to-global mapping m(e,n). This
mapping is embedded in the operator A which scatters the vector of global coefficients ûg upon the vector of local coeffi-
cients ûl as
ûl ¼ Aûg : ð7Þ
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When following a traditional Galerkin procedure, the discrete weak formulation to be solved is an integral form which typ-
ically contains terms of the type
Ig ½m� :¼
Z

X
Umðx1; x2Þf ðx1; x2Þdx1dx2; m 2 N g

: ð8Þ
The elemental decomposition of the problem now allows us to express this inner product of the function f(x1,x2) with respect
to the global basis {Um} as a series of elemental contributions such that
Ig ½m� :¼
XZ

Xe
/e

nðx1; x2Þf ðx1; x2Þdx1 dx2; ð9Þ
where the summation is taken over these elemental /e
n modes that correspond to the mth global mode as defined by the

mapping m(e,n). This process, referred to as global assembly or direct stiffness summation is graphically represented in
Fig. 3(b) and can be mathematically expressed as the transpose of A such that
Ig ¼ A>Il; ð10Þ
where Il is the vector of local contributions. This procedure of global assembly can be used to for example construct the glo-
bal mass matrix M as
M ¼ A>MeA; ð11Þ
where Me is the block-diagonal concatenation of elemental matrices Me.

3. Evaluation of finite element operators

When following a standard Galerkin procedure, the weak form of a partial differential equations often comprise terms of
the form
aðv ;uÞ; ð12Þ
where a(�,�) is a bi-linear form and u,v are functions respectively belonging to a suitably chosen trial space U and test space V.
The discrete equivalent based upon the spectral/hp expansion (6) yields expressions of the form
ŷg
i :¼

X
j2N g

aðUi;UjÞûg
j ; ð13Þ
which should typically be evaluated for all i 2 N g . Using the matrix associated to this bi-linear form, this finite element oper-
ation can be written as
ŷg ¼ Aûg ; ð14Þ
where A[i][j] = a(Ui,Uj).
The goal of this section is to analyse how the operators of type (13) or (14) can be efficiently evaluated for both low- and

high-order expansions. As a result, the focus is not on the matrix A itself, but merely on the action of A. We seek for the most
efficient way of mapping the vector ûg to the vector ŷg , without necessarily building A explicitly.

The action of finite element operators is required in various scenarios. Examples include:

� iterative solution techniques, which are founded on the forward operation of the matrix to be inverted,
� explicit time-stepping methods, which require an operator evaluation to compute the right-hand-side term of the semi-

discrete system, and
� the strong enforcement of non-homogeneous Dirichlet (essential) boundary conditions (see also Section 4.1).

3.1. Evaluation strategies

In this section, we discuss three different strategies to evaluate expressions of the form (13). The first two strategies –
referred to as the sum-factorisation technique and the local matrix approach – have in common that they both exploit the ele-
mental decomposition of the spectral/hp element method. The contribution of each element is computed separately, where-
after the different contributions are assembled together using the direct stiffness summation technique as explained in
Section 2.2. Both these approaches then evaluate (13) in the following three steps:
1: global-to-local mapping : ûl ¼ Aûg ; ð15Þ
2: elemental evaluation : ŷe

m ¼
X
n2N

aeð/e
m;/

e
nÞûe

n 8m 2 N ; e 2 E; ð16Þ

3: global assembly : ŷg ¼ A>ŷl: ð17Þ



Fig. 4. A graphical representation of the different implementation strategies.
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The question then becomes: how can the elemental form (16) be evaluated efficiently?
The third strategy using global matrices-differs from both these approaches in the sense that it is based on the global inter-

pretation of the spectral/hp element method, rather than on its elemental decomposition.
A graphical representation of the different strategies is shown in Fig. 4. The existence of different evaluation strategies has

been acknowledged before in [14,15]. In the present work, we will elaborate on a detailed cost analysis both from a theo-
retical (Section 3.2) as computational (Section 3.3) point of view and we particularly emphasise on the difference in results
depending on the expansion order.

3.1.1. The sum-factorisation approach
To introduce the sum-factorisation technique, consider the example of the mass matrix operator. The elemental bi-linear

form appearing in (16) is then defined asZ

aeð/m;/nÞ ¼

Xe

/mðxÞ/nðxÞdx: ð18Þ
Making use of the coordinate transformation (2), this can be expressed as an integral over the reference domain Xst
aeð/m;/nÞ ¼
Z

Xst

/mðnÞ/nðnÞjJðnÞjdn; ð19Þ
where J is the Jacobian of the transformation.
The sum-factorisation technique is based upon two concepts: numerical quadrature and the use of tensorial basis

functions.

3.1.1.1. Evaluation using numerical quadrature. Assume a quadrature rule of order Q to evaluate the integral
Z
Xst

f ðnÞdn ¼
X
r2Q

f ðnrÞxr: ð20Þ
Inserting (20) and (19) into (16) leads to the following expression to be evaluated:
ŷm ¼
X
n2N

X
r2Q

xr/mðnrÞ/nðnrÞjJðnrÞjûn; 8m 2 N ; ð21Þ
where for clarity, we have omitted the index e. After rearranging, this yields
ŷm ¼
X
r2Q

/mðnrÞxrjJðnrÞj
X
n2N

/nðnrÞûn

( )
; 8m 2 N : ð22Þ
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In matrix notation this simplifies to
ŷ ¼ B>WBû; ð23Þ
where B[i][j] = /j(ni) is the discrete representation of the expansion basis and W is the diagonal matrix with entries
W[i][i] = xi|J(ni)|. For conciseness, we also have omitted the subscript l on the local coefficient vectors ŷ and û. It can be
appreciated that the mass matrix operator can now be evaluated into two separate steps: a backward transformation
u ¼ Bû which evaluates the spectral/hp expansion at the quadrature points, and the inner product operator ŷ ¼ B>Wu which
subsequently takes the inner product of the function u with respect to all elemental expansion modes.

Remark 1. Despite the typical formulation (23) in matrix notation, the numerical quadrature approach can be classified as a
matrix-free approach. It is matrix-free in the sense that evaluation of the operator is not dependent on the construction of the
matrix associated to the bi-linear form.
3.1.1.2. Sum-factorisation for quadrilateral expansions. If both the spectral/hp expansion basis and the numerical quadrature
rule exhibit a tensor-product structure, the backward transformation as well as the inner product can be factorised using
the sum-factorisation technique. Consider the backward transformation u ¼ Bû for a quadrilateral element, defined as
uðnrÞ ¼
X
n2N

/nðnrÞûn 8r 2 Q: ð24Þ
Acknowledging the tensorial nature of both the expansion and quadrature rule, this yields
uðn1s; n2tÞ ¼
XP

p¼0

XP

q¼0

wa
pðn1sÞwa

qðn2tÞûpq ¼
XP

q¼0

wa
qðn2tÞ

XP

p¼0

wa
pðn1sÞûpq

( )
; 8s; t 2 f0; . . . ;Q � 1g; ð25Þ
where we have factored the term wa
qðn2tÞ out of the second summation. In matrix notation, this is equivalent to:
u ¼ Bû ¼ Ba
2 � Ba

1

� �
û ¼ Ba

2 � I
� �

I � Ba
1

� �
û

� �
; ð26Þ
where Ba
m½i�½j� ¼ wa

j ðniÞ represents the one-dimensional basis in direction m. Note that the relation B ¼ Ba
2 � Ba

1 reflects the
tensorial structure of the expansion. Consequently, the backward transformation can then be evaluated into two separate
steps:

A first step to compute the temporary variable v ¼ ðI � BaÞû:
vqðn2sÞ ¼
XP

p¼0

wa
pðn1sÞûpq 8q; s; ð27Þ
followed by the evaluation of u = (Ba � I)v:
uðn1s; n2tÞ ¼
XP

q¼0

wa
qðn2tÞvqðn2sÞ 8s; t: ð28Þ
Furthermore, if we respectively consider û and u as the column-major vectorisation of the matrices Û and U, the notation can
be further simplified to [8]
U ¼ Ba
1ÛBa>

2 : ð29Þ
As a result, both sub-steps (27) and (28) can effectively be evaluated as the matrix–matrix multiplications V ¼ Ba
1Û and

U ¼ V̂Ba>
2 , respectively. However, note that this does require a lexicographical ordering of the two-dimensional expansion

modes ûnðp;qÞ with the p index running fastest. Also the vector ur(s,t) should follow a similar ordering along the first coordinate
direction.

Analogously, the inner product operator ŷ ¼ B>Wu can be factorised as
bY ¼ Ba>
1 wðUÞBa

2; ð30Þ
where the function w multiplies each entry U[i][j] = u(n1i,n2j) with the corresponding quadrature metric xi,j|J(n1i,n2j)|.
Consequently, we can conclude that when adopting the sum-factorisation approach, the mass matrix operator can be eval-
uated as:
bY ¼ Ba>w BaÛBa>
� �

Ba: ð31Þ
This notation helps to appreciate that from an implementational point of view, this corresponds to a series of matrix–matrix
products.
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Remark 2. The use of numerical quadrature is not a necessary prerequisite for the application of the sum-factorisation
technique. The evaluation of the elemental mass matrix operator can also be factorised as
ŵmðp0 ;q0 Þ ¼ jJj
XP

p¼0

Z 1

�1
wa

pðn1Þwa
p0 ðn1Þdn1

XP

q¼0

Z 1

�1
wa

qðn2Þwa
q0 ðn2Þdn2

( )
ûn 8p0; q0; ð32Þ
or equivalently,
ŵ ¼ jJj Ma �Ma� �
û; ð33Þ
where Ma is the mass matrix associated with the one-dimensional reference element. However, this approach implies that |J|
is a constant, which cannot be generally assumed. That is why in this work, the sum-factorisation technique will always be
combined with the use of numerical quadrature.
3.1.1.3. Sum-factorisation for triangular expansions. For triangular elements, the use of a generalised tensor-product expansion,
makes the sum-factorisation technique more complicated. While in Eq. (25), both the terms could be equally well being fac-
torised out of the inner summation the backward transformation for triangles can only be factored as:
uðn1s; n2tÞ ¼
XP

p¼0

Xf ðpÞ
q¼0

wa
pðn1sÞwb

pqðn2tÞûpq ¼
XP

p¼0

wa
pðn1sÞ

Xf ðpÞ
q¼0

wb
pqðn2tÞûpq

( )
8s; t: ð34Þ
In addition, both the summation bound f(p) as the term wb
pq of the inner summation now also depends on the index p, which

prohibits a formulation similar to (26). Instead, the expression above can be written as
u ¼ Ba
1 � I

� �
Bbû; ð35Þ
where Bb is the block-diagonal concatenation of the matrices Bb
p (p = 0, . . . ,P) which are defined as Bb

p½i�½j� ¼ wb
piðn2jÞ. As op-

posed to the quadrilateral case, this requires an ordering of the modes ûnðp;qÞ where q is running fastest. It can be appreciated
that the first sub-step Bbû cannot be implemented as a matrix–matrix product. Consequently, the implementation of (35)
consist of P + 1 matrix–vector multiplications to evaluate v ¼ Bbû, followed by a matrix–matrix multiplication to evaluate
u ¼ ðBa

1 � IÞv as U ¼ Ba
1V>. (In this last step we have chosen U ¼ Ba

1V> over U ¼ VBa>
1 in order to ensure an ordering of ur(i, j)

with the index i running fastest.)
The inner product and mass matrix operators for triangular expansions can be factorised in a similar way. This is dis-

cussed in more detail in [16].

3.1.2. The local matrix approach
The second elemental evaluation strategy is the local matrix approach. In this approach, the bi-linear form (16) is evalu-

ated using the matrix associated to it. The evaluation of the elemental mass matrix operator then reduces to the matrix–vec-
tor multiplication
ŷ ¼Meû; ð36Þ
where Me½i�½j� ¼
R

Xe
/e

i /
e
j dXe is the elemental mass matrix. For the scope of this work, we do not consider the construction of

the mass matrix to be part of the evaluation. We will assume that Me has been precomputed (e.g. by means of (23) or (31))
and is readily available to evaluate (36).

3.1.3. The global matrix approach
As opposed to both the previous evaluation strategies, the global matrix approach acts directly upon the global bi-linear

form (13). For the mass matrix operator, this form is then evaluated using the global mass matrix M as
ŷg ¼Mûg ; ð37Þ
where M½i�½j� ¼
R

X UiUj dX. The finite element method typically leads to global matrices which are very sparse. For efficient
storage and manipulation of sparse matrices, different formats only storing the non-zero entries of M have been proposed.
Again, we assume that the global matrix M has been precomputed (e.g. through the global assembly procedure (11)) such
that the global matrix evaluation only consist of the (sparse) matrix–vector multiplication.

3.2. Theoretical cost estimates based on operation count

In order to assess the efficiency of the different strategies, we will first analyse the operation count associated to each
approach by investigating how many floating point operations each evaluation strategy requires.
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3.2.1. Sum-factorisation versus local matrices
When comparing both the elemental strategies for evaluating the quadrilateral mass matrix, it can be observed that the

factorised evaluation replaces the matrix–vector multiplication (36) by a series matrix–matrix multiplications, i.e. Eq. (31).
However, while in the local matrix approach the single matrix Me is of size OðP2Þ � OðP2Þ, the matrices Ba

m in the sum-
factorisation approach are only of sizeOðPÞ � OðPÞ. This can also be explained as follows: the elemental mass matrix Me truly
is a two-dimensional operator while on the other hand, the sum-factorisation technique exploits the tensorial nature of
expansion by applying the one-dimensional operators Ba

m along all the lines of constant nn. As a result, the local matrix
approach requires OðP4Þ floating point operations to evaluate while the factorised evaluation only involves OðP3Þ operations
per matrix–matrix multiplication. This effectively is the strength of the sum-factorisation approach: it replaces an OðP4Þ
operation by multiple OðP3Þ operations. This ensures a substantial performance benefit for the limit P ?1. However,
for low-order expansions the coefficients of the leading order terms in the operation count do play an important role such
that an exact operation count is required to assess whether the sum-factorisation technique truly reduces the number of
floating point operations. A complete operation count analysis for four different finite element operators can be found back
in [16], and the results are summarised in Table 1 and Figs. 5 and 6. From these data, it appears that for the backward
transformation and the inner product operator – which for the factorised evaluation only involve two matrix–matrix
multiplications – the sum-factorisation technique is always more efficient, except for the linear finite element case (P = 1)
on triangular elements. However, for more complex operators such as the mass matrix operator or the Helmholtz operator
defined as
Table 1
Theoret

Quad

Tri
aeð/n;/mÞ ¼
Z

Xe

r/nðxÞ � r/mðxÞ � k/nðxÞ/mðxÞdx; ð38Þ
the factorised evaluation, respectively, requires four and eight matrix–matrix multiplications. Consequently, the sum-facto-
risation technique only becomes more efficient from respectively P = 5 and P = 10 in the quadrilateral case. For triangular
expansions, the break-even point may even be as high as P = 27 for the Helmholtz operator.

From the same data, it can also be observed for all operators that the sum-factorisation technique leads to a smaller
reduction for triangular than for quadrilateral elements, both in terms of the break-even point as the reduction factor. This
reduced effectiveness can be attributed to the triangular tensorial expansion not being constructed as a full tensor product.

Since Orszag’s work [17] in 1980, the sum-factorisation technique has always been considered the key to the efficient
implementation of global spectral methods (where a polynomial order P = 100 is deemed normal). However, the analysis
in this section indicates that this cannot be considered as generally valid for the spectral element method in our chosen oper-
ational regime of 1 6 P 6 15. The results show that sum-factorisation does not necessarily lead to a reduction in floating
point operations, especially when evaluating complex operators for low-order expansions.
3.2.2. Global matrices versus local matrices
3.2.2.1. Quadrilateral expansions. For a multi-elemental spectral/hp expansion, it can be understood from [16] that the local
matrix evaluation will require 2jEjðP þ 1Þ4 floating point operations. On the other hand when adopting the global matrix
strategy together with a sparse storage format to store M, the operation count will scale like nnz, where nnz is the number
of non-zero entries in M. An entry M[i][j] is typically non-zero if the global basis function Ui and Uj are coupled, i.e. they have
overlapping support. Estimates for the operation count are derived in [16] and the results are shown in Table 2 and Fig. 5.

The global matrix evaluation appears to be attractive in particular for low-order elements. In case P = 1 every global mode
of a structured quadrilateral mesh is coupled to its nine neighbouring global modes (including itself), leading to nine mul-
tiply–add pairs per global DOF. However, every global mode corresponds to four local modes which each are coupled to the
four linear elemental modes. As a result, the local matrix evaluation then requires 4 � 4 = 16 multiply–add pairs per global
DOF. This implies that for P = 1 using global matrices only requires a fraction 9/16 = 0.5625 of the floating point operations
needed for the local matrix approach (assuming a sufficient mesh-size).

When increasing P, relatively more interior modes than edge modes will be added to each element. As there exist a one-
to-one mapping between elemental interior modes and global expansion modes, the effect of the multiplicity of the elemen-
ical operation count (floating point multiplications and additions) for the elemental evaluation strategies.

Sum-factorisation Local matrix Break-even

Backward transformation 4P3 + 18P2 + 26P + 12 2P4 + 12P3 + 26P2 + 24P + 8 P = 1
Inner product 4P3 + 19P2 + 30P + 16 2P4 + 12P3 + 26P2 + 24P + 8 P = 1
Mass matrix 8P3 + 37P2 + 56P + 28 2P4 + 8P3 + 12P2 + 8P + 2 P = 5
Helmholtz 16P3 + 93P2 + 184P + 124 2P4 + 8P3 + 12P2 + 8P + 2 P = 10

Backward transformation 3P3 + 12P2 + 17P + 8 P4 + 6P3 + 13P2 + 12P + 4 P = 2
Inner product 3P3 + 13P2 + 20P + 10 P4 + 6P3 + 13P2 + 12P + 4 P = 2
Mass matrix 6P3 + 25P2 + 37P + 18 0.5P4 + 3P3 + 6.5P2 + 6P + 2 P = 11
Helmholtz 14P3 + 69P2 + 113P + 58 0.5P4 + 3P3 + 6.5P2 + 6P + 2 P = 27



Fig. 5. Operation count results (scaled by the local matrix evaluation operation count) of the different evaluation strategies for a structured quadrilateral
mesh. The boxes with encircled tags S (sum-factorisation), L (local matrix) or G (global matrix) indicate the optimal strategy for the corresponding range of
P.
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tal boundary modes will decrease. As a results, when neglecting the cost of assembly of the local matrix approach, the com-
plexity of the global matrix evaluation will asymptotically approach to the complexity of the local matrix evaluation for
P ?1. This can also be observed in Fig. 5.

3.2.2.2. Triangular expansions. For unstructured triangular meshes, it is more difficult to estimate the non-zero entries of the
global matrix M as it depends on the distribution of the triangles within the mesh. Estimates have been made in [14] and the
results are presented in Table 2 and depicted in Fig. 6. A similar trend as for structured quadrilateral meshes can be observed,
but the advantage of the global matrix approach is even greater in the triangular case. This can be explained by the bigger
boundary modes to interior modes ratio for triangles, resulting in greater dominance of the multiplicity of global DOFs.

Remark 3. Although the Helmholtz and mass matrix operator share an identical operation count for both the local and
global matrix approach, their results differ from the backward transformation and inner product operator. This is because
one dimension of the backward transformation and inner product is in terms of the quadrature points, which are not being
assembled. The global matrix evaluation then only benefits from assembly in one direction. However, it appears that this
assembly does not lead to a reduction in non-zero entries such that the local matrix approach and global matrix operation
have similar operation count for these operators. On the other hand, the assembly does decrease the rank of the operator.
3.2.3. Optimal strategy
Based upon the operation count estimates summarised in Figs. 5 and 6, one may conclude that for low-order expansions

the global matrix evaluation strategy is superior, while for high-order expansions, the sum-factorisation technique is
preferred.



Fig. 6. Operation count results (scaled by the local matrix evaluation operation count) of the different evaluation strategies for an unstructured triangular
mesh. The boxes with encircled tags S (sum-factorisation), L (local matrix) or G (global matrix) indicate the optimal strategy for the corresponding range of P.

Table 2
Operation count estimates of the local matrix and global matrix approach to evaluate a global bi-linear form on a structured quadrilateral mesh
(jE1dj � jE1dj ¼ jEj elements) and an unstructured triangular mesh (jEj elements).

Local matrix Global matrix limjEj!1 GlobMat
LocMat

Quad DOFs jEjðP þ 1Þ2 ðjE1d jP þ 1Þ2 1� 1
Pþ1

� �2

operation count 2jEjðP þ 1Þ4 2ðjE1djPðP þ 2Þ þ 1Þ2 1� 1
ðPþ1Þ2

� �2

Tri DOFs 1
2 jEjðP þ 1ÞðP þ 2Þ 1

2 jEjP
2 P2

ðPþ1ÞðPþ2Þ

Operation count 2jEj 1
2 ðP þ 1ÞðP þ 2Þ
� �2 2jEj 14 ðP

4 þ 6P3 þ 7P2Þ P4þ6P3þ7P2

ððPþ1ÞðPþ2ÞÞ2
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3.3. Computational cost based on run-time

The previous section indicates that the application of different evaluation strategies depending on P leads to a reduction
in operation count. Here, we analyse whether this reduction in operation count leads to more efficient algorithms by directly
comparing the resulting run-time. This may not be guaranteed as the efficiency of a certain implementation is not only quan-
tified by the number of floating point operations. Various other factors such as the number of memory references, memory
access time, caching effects, data structures and chip architecture do play an important role as well. Furthermore, the role of



Fig. 7. Computational cost (i.e. run-time scaled by the local matrix evaluation run-time) of the different evaluation strategies for a structured quadrilateral
mesh of 1000 elements. The boxes with encircled tags S (sum-factorisation), L (local matrix) or G (global matrix) indicate the optimal strategy for the
corresponding range of P.
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possibly optimised linear algebra packages such as BLAS2 should not be forgotten. As it is a cumbersome, if not impossible, task
to estimate the cost of these separate parameters, the efficiency of the different strategies will be assessed by comparing the
total computational cost (quantified by the actual run-time) of the different strategies.

The results are summarised in Fig. 7 and 8. We will now compare these results with Figs. 5 and 6, respectively, leading to
the following two important observations:

� The performance benefit of the sum-factorisation technique is reduced, shifting the break-even point between the ele-
mental approaches to the right in favour of the local matrix approach. This can probably be explained by the fact that
the sum-factorisation technique requires temporary storage, which induces some additional cost from a computational
point of view.
� Although the global matrix technique is still preferable for low-orders, it rapidly becomes excessively expensive for

higher orders. This is most likely due to the inability to exploit the locality of the data which cancels the reduction in oper-
ation count.

Both these factors contribute to the rise of an intermediate regime between low- and high-order expansions, where the
local matrix approach now is the optimal strategy. This is clearly visible in both Figs. 7 and 8.

All tests presented in this section were run on an Intel MacBook Pro (2.33 GHz dual core processor, 2 GB RAM) and the
performance tests were based upon the implementation of the different strategies within the Nektar++ framework.3 The
2 http://www.netlib.org/blas.
3 http://www.nektar.info.

http://www.netlib.org/blas
http://www.nektar.info
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computational kernel for the sum-factorisation technique and local matrix approach was based upon the reference imple-
mentation of the BLAS routines dgemm and dgemv, respectively.4 The global matrix evaluation was implemented using
the dcsrmm routine of the NIST sparse BLAS library.5 Validation tests were run on machines with different specifications,
and although the results may differ slightly in terms of the break-even points, the general trends and principles observed
have been confirmed.

3.4. Lessons learned

In order to efficiently implement the spectral/hp element method for a broad range of polynomial orders, one should dis-
tinguish three different regimes:

� a low-order regime where the global matrix approach is most efficient,
� an intermediate order regime where the local matrix approach is most efficient, and
� a high-order regime where the sum-factorisation approach is most efficient.

Note that efficiency is defined here in a computational sense, i.e. minimising the actual run-time. Remember that we have
assumed the use of tensorial expansion bases in the analysis. For non-tensorial expansions such as the nodal triangular spec-
tral/hp expansions [9], only the first two regimes will be applicable as the sum-factorisation technique cannot be applied.
o

c

M

a

t

i.e. run-time scaled by the local matrix evaluation run-time) of the different evaluation strategies for an unstructured triangular
mesh of 1032 elements. The boxes with encircled tags S (sum-factorisation), L (local matrix) or G (global matrix) indicate the optimal strategy for the
corresponding range of P.
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Consequently, non-tensorial expansion will not benefit from the observed performance gain due to the sum-factorisation
technique in case of high-order expansions.

It can be observed that selecting a non-optimal evaluation strategy can lead to very inefficient code. When for example
evaluating the Helmholtz operator for a fourth-order triangular spectral/hp expansion, applying the sum-factorisation tech-
nique rather than the global matrix approach will increase the run-time by a factor 15. For a linear expansion, this factor has
even been observed to be as high as 150.

The break-even points between the different regimes will in general depend on:

� the operator to be evaluated,
� the shape of the element (quadrilateral versus triangle), and
� the computer on which the code is run.

Although the theoretical operation count may have given an indication of these regimes, the results in Section 3.3 show
the importance of performance test to determine the computer-specific break-even points, especially when operating in the
intermediate regime between low and high-order. For example, based upon operation count, Fig. 5(c) would suggest that
sum-factorisation is the optimal technique to evaluate the mass matrix for a fifth-order expansion. However, Fig. 7(c) shows
that the application of the local matrix approach leads to a reduction in run-time with a factor 1/3. This also supports the
idea of a self-tuning library (such as the ATLAS6 implementation of BLAS): in order to obtain optimal performance, a set of tests
should be run during installation in order to determine the machine-specific break-even points.

4. Optimal spectral/hp discretisations

Now we have determined the optimal implementation for both low and high-order expansions, we may ask the following
question: given the most efficient implementation, what is the optimal spectral/hp discretisation for a given error tolerance?
We define the optimal discretisation as the (h,P)-pair – the specific combination of mesh size h and polynomial order P –
which requires the minimal run-time to approximate the exact solution up to a predefined accuracy. Answers to this question
have been presented before in [18–22]. In these previous works, the computational cost of the algorithms have been esti-
mated by analytical models. However, based upon the results of the previous section, we believe that an analysis from a purely
analytic point of view may not be able to correctly model all factors that make up the actual run-time. Therefore, we adopt a
fully computational approach where we base our analysis on the measured run-time of a set of performance test. In addition,
note that we do not aim to provide a universal statement to answer this question as it will highly depend of the problem under
consideration. Instead we have identified a few examples and demonstrate how the results of the previous section may influ-
ence the discussion. Therefore, we have chosen to solve the scalar Helmholtz equation for four different test cases.

4.1. Test problem: the scalar Helmholtz equation

The two-dimensional scalar Helmholtz problem on a domain X is given by the equation
6 http
r2uðx; yÞ � kuðx; yÞ ¼ f ðx; yÞ; k P 0: ð39Þ
The problem is supplied with Dirichlet boundary conditions on the entire boundary of the domain, i.e. uðx; yÞj@X ¼ gDðx; yÞ
and we for simplicity we assume k = 1. We have chosen not to consider a more complex test case as we believe the simplicity
of this problems enables us to unambiguously investigate the influence of the mesh-size h and polynomial order P. If for
example selecting a time-dependent problem such as the advection–diffusion equation, the time-step Dt will depend on
the mesh-size h through the CFL-condition. It can be appreciated that this additional dependency will quickly complicate
the analysis. Therefore, it should be kept in mind that the presented results cannot simply be extrapolated to time-depen-
dent problems as this will require a careful analysis.

To solve Eq. (39) we follow a standard Galerkin procedure to obtain the weak form: Find u 2 U such that
Z
X
rv � rudxþ

Z
X

vudx ¼ �
Z

X
vf dx; 8v 2 V; ð40Þ
where U and V are a suitably chosen trial and test space, respectively. In order to impose the Dirichlet boundary conditions
we adopt a lifting strategy where the solution is decomposed into a known function, uD and an unknown homogeneous func-
tion uH, i.e.
uðxÞ ¼ uHðxÞ þ uDðxÞ: ð41Þ
Here uD is satisfying the Dirichlet boundary conditions, uD(oXD) = gD while uH is homogeneous on the Dirichlet boundary,
uH(oXD) = 0. Subsequently, as part of the discretisation process, the solution is expanded in terms of a globally C0-continuous
expansion basis as
://math-atlas.sourceforge.net.
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uðxÞ ¼
X
i2N

UiðxÞûg
i ¼

X
i2NH

UHi ðxÞûHi þ
X
i2N

UiðxÞûDi ; ð42Þ
where the set {UH} consists of the basis-functions having no support on the Dirichlet boundary. Note that N now refers to
the index set of the global degrees of freedom. Finally, employing the same expansion basis {UH} to span the test space V
results in the following discrete global system to be solved
X

j2NH
hðUHi ;U

H
j ÞûHj ¼ �ðU

H
i ; f Þ �

X
j2N

hðUHi ;UjÞûDj ; 8i 2 NH; ð43Þ
where the bi-linear form hðu;vÞ ¼
R
ru � rv dxþ

R
uv dx corresponds to the Helmholtz operator and (u,v) is defined as the

inner product ðu;vÞ ¼
R

uv dx.
From an implementational point of view, Eq. (43) can typically be solved in four major steps (thereby neglecting the steps

involving linear combinations of vectors):

(1) Calculate the inner product of the forcing function ðUHi ; f Þ; 8i 2 NH.
(2) Calculate the Dirichlet forcing

P
j2NhðUHi ;UjÞûDj ; 8i 2 NH.

(3) Solve the linear system of type HûH ¼ f where H is the global Helmholtz matrix.
(4) Transform the coefficients back to physical space, i.e. uðxiÞ ¼

P
j2NUjðxiÞûg

j ; 8i 2 Q.

We have adopted an implementation strategy where the first two operations are evaluated with respect to the entire set
of global basis functions, i.e. ðUi; f Þ; 8i 2 N rather than ðUHi ; f Þ; 8i 2 NH. Because of this, it can be appreciated that the eval-
uation of steps (1) and (2), respectively, correspond to the inner product and Helmholtz operator as described in Section 3. In
addition, it can be recognised that step (4) is the operation that we have defined as a backward transformation. As a results,
these three sub-steps of the solution algorithm may benefit from the optimisation strategies introduced in Section 3. It is
therefore through these routines that the influence of the different implementation strategies on the definition of optimal
hp-discretisations may become apparent. Finally, note that when adopting an iterative solution method such as the conju-
gate gradient method, the implementation of the third step can also be based on the different implementation strategies.
However, due to the limited size of the global system in two-dimensional, we have adopted a direct solution method based
upon the static condensation of the interior degrees of freedom [7]. The resulting Schur complement is reordered for minimal
bandwidth and solved using the LAPACK routines dptrf and dptrs.7

4.2. Test problem 1: quadrilateral spectral/hp discretisations for a smooth solution

The first example we consider is a smooth solution on the unit square X = [0,1] � [0,1]. The forcing function f and the
Dirichlet boundary conditions gD are chosen such that the exact solution satisfies
uexðx; yÞ ¼ sinð10pxÞ cosð10pyÞ: ð44Þ
Our aim is to find the quadrilateral hp-discretisation which minimises the run-time for a certain error tolerance. Therefore,
we let the mesh-size between and the polynomial order, respectively, vary between 1 6 1=h ¼ jE1dj 6 25, 1 6 P 6 15 and
solve the corresponding Helmholtz equation for all 375 possible (h,P) combinations. Note that the spatial uniformity of
the solution justifies the uniform adaptation of the expansion. The L2 approximation error defined as
k�kL2
¼

Z
X

uex � uð Þ2dx
� 	1

2

; ð45Þ
is depicted in Fig. 9(a) for all discretisations. Predictably, low-order expansions on a coarse mesh exhibit a large error while
high-order expansions on a fine mesh lead to the most accurate results. The computational cost – quantified by the run-time
– of every (h,P) pair is plotted in a similar style in Fig. 9(b) where the error plots are overlaid. We here show the run-time
result based upon the optimal implementation, i.e. an implementation where depending on the polynomial order P we have
selected the most efficient evaluation strategy for each individual operator following the results of Section 3.3. Although
both the error and cost contours follow a similar trend, they are not parallel. Note that although all data are essentially dis-
crete, we have interpolated the data in the presentation of these results to obtain a continuous representation.

If we now fix the error tolerance to 10%, we can ask how these plots may help us to find the optimal discretisation (h,P)
satisfying this tolerance? Therefore, we want to know which point on the 10% error contour line depicted in Fig. 9(a) induces
the minimal run-time. Therefore, we can use the arc-length of this contour line as the horizontal axis and plot the corre-
sponding computational cost from Fig. 9(b) as a function of this arc-length, i.e. we extract the data along the solid black line
in Fig. 9(b). This is shown in Fig. 10(a). Besides the cost due to the optimal implementation, this figure includes different lines
all corresponding to a different interpretation of the computational cost. The dashed line defines the computational cost as
the total number of global degrees of freedom while the other lines are due to a single implementation strategy using either a
://www.netlib.org/lapack.
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Fig. 10. Minimal run-time at fixed error-level of the different quadrilateral spectral/hp discretisations used for approximating the Helmholtz problem with
smooth exact solution (44).

Fig. 11. Decomposition of the run-time due to the optimal (hybrid) implementation strategy along the 10% error contour when approximating the
Helmholtz problem with smooth exact solution (44).
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is widely appreciated that the spectral/hp element method is particularly efficient for obtaining high accuracy in smooth
problems [8,7]. However, by focusing on a engineering accuracy of 10%, we have shown that the high-order methods can
also be justified for relatively low accurate approximations.

Finally, we would like to couple this path of minimal run-time to an earlier observation made by Gottlieb and Orszag. In
[10], they showed that for a one-dimensional problem with exact solution
uðxÞ ¼ sinðMpxÞ on ½�1;1�; ð46Þ
a single-element spectral expansion should retain at least N > Mp modes in order to achieve exponential p-convergence.
Translated to the two-dimensional problem under consideration, this would suggest that for exponential p-convergence,
the multi-elemental spectral/hp element discretisation should satisfy
N > 10p h
2
; ð47Þ
where N = P + 1. This condition is graphically represented in Fig. 12 as the area above the ‘‘Gottlieb–Orszag threshold”. Heu-
ristically, this may lead to the following discretisation strategy: use h-type refinement until crossing this ‘‘Gottlieb–Orszag
threshold” and subsequently increase the polynomial order P according to the desired accuracy. This leads to the conver-
gence path also shown in Fig. 12. Although this approach may provide a simple rule of thumb, the results show that the
resulting convergence path is different from the path of minimal run-time defined earlier and hence will be computationally
less efficient. The problem is that in this approach, it has been assumed that one should follow an h-type refinement strategy
(with P = 1) in the unresolved regime. Although this indeed leads to the least expensive point on the Gottlieb–Orszag



Fig. 12. Possible path of convergence when following the argument presented by Gottlieb and Orszag when approximating the Helmholtz problem with
smooth exact solution (44).
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threshold in Fig. 12, this point certainly does not minimise the run-time on the corresponding error contour. Instead, our
analysis shows that for minimal run-time one should combine both ideas of h-refinement and p-enrichment to select an ini-
tial discretisation along the Gottlieb–Orszag threshold. Hereafter, the polynomial order P can be increased for higher
accuracy.

4.3. Test problem 2: quadrilateral spectral/hp discretisations for a smooth solution with high wave-number

As a second example, we consider the Helmholtz equation with a similar solution but with a higher wave-number
uðx; yÞ ¼ sinð20pxÞ cosð20pyÞ: ð48Þ
Obviously, the computational cost for each specific spectral/hp expansion is the same as in the previous example but it now
will require more degrees of freedom to obtain a specific error tolerance. Following a similar approach as in the previous
example, it can be derived that for an engineering accuracy of 10%, the optimal hp-discretisation minimising the run-time
again comprises a sixth-order expansion but now on a 6 � 6 mesh, see also Table 3. As in the previous case, the most efficient
way of enhancing the accuracy is by increasing the polynomial order and keeping the mesh fixed. The analogy with the pre-
vious example seems to suggest that for the type of exact solution under consideration, i.e.
uðx; yÞ ¼ sinðMpxÞ cosðMpyÞ; ð49Þ
the optimal quadrilateral h-discretisation consists of 3M
10 � 3M

10 elements, independent of the desired accuracy. Hence, it is the
polynomial order that should be varied accordingly to satisfy a predefined error tolerance.

4.4. Test problem 3: triangular spectral/hp discretisations for a smooth solution

Next we consider exactly the same problem as in Section 4.2 for the first test problem. However, rather then using struc-
tured quadrilateral meshes we now use unstructured triangular meshes. Using the same analysis as for the quadrilaterals
examples, we have observed that for a 10% error, again a sixth-order spectral/hp expansion with characteristic mesh-size
h = 1/5 – which corresponds to 38 triangles – is the computationally most efficient hp-discretisation (see also Table 3).
The run-time associated to this optimal triangular hp-discretisation appears to more than twice the run-time needed for
the optimal quadrilateral expansion. As a result, for the uniform test-case under consideration, the quadrilateral sixth-order
expansion employing 3 � 3 elements can be considered as the true optimal spectral/hp expansion. However, we would like
to remark that this apparent superiority of the quadrilateral expansion is reinforced by the tensorial structure of the exact
solution. Indeed, if we rotate the exact solution with 30�, the overhead of the triangular expansion is reduced by 20%. Regard-
ing the convergence of the error in this triangular case, we can draw analogous conclusions as for the quadrilateral case.

4.5. Test problem 4: quadrilateral spectral/hp discretisations for an irregular solution

Finally, we include an example which exact solution is not infinitely smooth. Therefore, we consider the L-shape domain
problem shown in Fig. 13. The forcing function f and Dirichlet boundary conditions are chosen such that the Helmholtz Eq.
(39) yields the exact solution
u xðr; hÞ; yðr; hÞð Þ ¼ r
2
3 sin

2
3

hþ p
3


 �
; ð50Þ



Fig. 13. Quadrilateral spectral/hp discretisations to approximate the Helmholtz problem with exact solution (50).

Fig. 14. Quadrilateral spectral/hp discretisations to approximate the Helmholtz problem with exact solution (50).
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where (r,h) are the traditional polar coordinates. Because of the term r
2
3, the gradient of the solution will exhibit a singularity

at the re-entrant corner. This problem has been extensively studied in a FEM and hp-FEM context, often with an emphasis on
adaptive refinement, see e.g. [23]. In this study, we do not consider adaptivity but adopt a discretisation strategy where we
account for the locality of the singularity by using a radical rather than equispaced mesh. The grid-points in each interval
[0,±1] of a radical mesh are located at
xi ¼ �
i

jEj1d

 !b

; i ¼ 0;1; . . . ; jEj1d
; ð51Þ
where the parameter b is chosen as b = 3 (according to [24]) and jEj1d is the number of elements in one dimension. The error
and cost contours are depicted in Fig. 13(b). Note that the error contours follow a different pattern than for the cases with a
smooth solution. This problem therefor has an entirely different path of minimal run-time, see Fig. 14(b). There are various
remarkable features in this figure. First it can be seen that for a given error tolerance, all strategies appear to suggest almost
the same (h,P) discretisation. This includes the discretisation which minimises the number of degrees-of-freedom rather
than the run-time. This may be appreciated by considering Fig. 14(a) which shows that the minimum – based upon DOFs –
along the 10�4 error contour is now much sharper than for the smooth test-problems, see for example Fig. 10(a). From
Fig. 14(b) it appears that the effect of the different implementation strategies do not cause significantly different run-time
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to overcome the overhead of additional DOFs. As a result, all minima seem to coincide around the same discretisation. Secondly,
it can be observed that the path of minimal run-time converges along the h-direction, rather than the P-direction. This is plau-
sible as the spectral/hp element method does not exhibit exponential error-convergence with respect to the polynomial order
because of the singularity. In addition the use of a radical mesh, which has been shown to be optimal for h-type FEM in this
context, and so may contribute to this observation. Finally, Fig. 14(b) clearly indicates that a fifth-order expansion is now opti-
mal and that the mesh-size should be varied according to the desired accuracy. Although this type of h-type convergence for
non-smooth problems is typically associated to low-order finite element methods (P = 1, or sometimes 16 P 6 3), the resulting
fifth-order optimum indicates that high-order finite element methods also have their use in solving singular problems.
5. Summary

We have shown that in order to implement the spectral/hp element method for the broad range of polynomial orders
(1 6 P 6 15), a spectral/hp element code should ideally support three different implementation strategies to evaluate the fi-
nite element operators. This allows a hybrid strategy based upon the polynomial order. For low-order expansions, as is com-
mon practice we have shown that the evaluation using global matrices is most efficient while for high order expansions, one
should preferably employ the sum-factorisation technique. If operating in the intermediate regime between low- and high-
order, the evaluation using local matrices is often the most efficient option. Furthermore, we demonstrated that the break-
even points between these different polynomial regimes depend on the operator to be evaluated, the shape of the element
and the computer on which the code is run. We have presented both theoretical estimates as well as computational test con-
firming this behaviour for different two-dimensional finite element operators.

In the second part of the paper, we have investigated how to select the parameters (h,P) of a spectral/hp discretisations in
order to minimise the run-time when solving an elliptic problem up to predefined accuracy. As expected, the numerical re-
sults indicate that in case of smooth solutions, one should fix the mesh and vary the polynomial order according to the de-
sired accuracy (p-convergence). In addition, our computational investigation has however highlighted the not quite so
intuitive result that for a low error level of 10% a reasonably coarse mesh with a sixth-order spectral/hp expansions mini-
mised the run-time. For non-smooth solutions on the other hand, and consistent with theory, we observed that the run-time
can be minimised by fixing the polynomial order of the expansion and refining the mesh according to the desired error tol-
erance (h-convergence). However, for the non-smooth test problem under consideration, we observed that a polynomial or-
der of as high as P = 5 was optimal, thereby promoting the use of high-order expansions for problems with corner-type
singularities, at least when using a radical mesh distribution.
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